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Abstract
We study a class of non-integrable systems, linear chains with homogeneous
attractive potentials and periodic boundary conditions, which are not
perturbations of the harmonic chain. In particular, we deal with the system H4

with a purely quartic potential, which may be shown to be stochastic without any
transition. For this model we prove the following pseudo-harmonic properties:
(1) the existence of a spectrum of frequencies which are proportional to the
harmonic ones, according to a well defined law; (2) the separability on average
of the Hamiltonian function among normal modes with these frequencies.
Moreover, as far as stochasticity and pseudo-harmonicity are concerned, H4

is the limit of the Fermi–Past–Ulam (FPU) chain when the energy density tends
to infinity. In this frame, the same results as previously obtained for the FPU
chain at high energy density are proven to be independent of the presence of
the harmonic potential, and to hold at arbitrarily high energies. As a byproduct,
we have a stochasticity indicator based on correlations which proves to be very
efficient and reliable.

PACS numbers: 0510G, 0545, 4520

1. Introduction

The possibility of ‘order within chaos’ has been widely discussed in the context of dynamical
systems, both abstract [1] and classical [2]. For Hamiltonian systems, the coexistence of
some kind of order with stochastic features (such as positive Lyapunov exponents, decay of
correlations, tendency to equipartition etc) is a topic of argument which periodically reappears,
as the complementary problem of possible stochasticity in quasi-integrable systems [3–7].

The prototype model for this kind of study is the Fermi–Pasta–Ulam (FPU) nonlinear
chain [8], mostly treated as a perturbation of the harmonic chain. We shall refer in particular
to the chain with quartic anharmonicity. Among recent results, we may quote the important
phenomenon of ‘chaotic breathers’, giving rise to localization processes [9]: they appear in
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a perturbative approach to exact breathers [10], requiring a tight attention to exact solutions
corresponding to particular initial conditions.

In the same model, another class of order phenomena regards the spectral properties of
time series associated with observables. It has been established [11, 12] that, for the energy
density u = E/N even above the so-called ‘strong-stochasticity threshold’ [4], there exists
a pseudo-harmonic spectrum of excitations, for which the harmonic modes work as ‘normal
modes on average’, for generic initial conditions.

Analytical estimates of such a spectrum were presented in [11] but not as a rigorous
theorem, so that their excellent confirmation by numerical experiments in [12] was not
redundant. However, some problems remain open:

• the harmonic term plays a trivial role and it can even be dropped from the beginning in
the analytical estimates but not in the numerical experiments, which have been performed
on the complete FPU model, so the influence of the underlying harmonic structure cannot
be excluded;

• there exists, in principle, the possibility of a further transition at extremely high energy
density, leading FPU to a higher type of stochasticity (for example: the pseudo-harmonic
spectrum evolving toward white noise).

Bearing all this in mind, we shall resume the problem of pseudo-harmonicity within the
stochastic regime, by studying a model with a purely quartic potential, named in the following
H4, which will be shown to possess the following properties:

• obviously, at no energy can it be looked at as a perturbation of the harmonic chain;
• it is stochastic for all energies;
• it has ‘normal modes on average’, to the same extent as FPU;
• simple dimensional analysis can be applied, giving further support to the previous difficult

estimates in [11];
• its behaviour can also be read, via a rescaling procedure, as the asymptotic energy

behaviour of FPU.

From all these points, answers to the problems listed above follow: pseudo-harmonicity does
not depend on the harmonic potential, and in FPU there is no further stochastic transition as
u → ∞.

Incidentally, for both H4 and FPU, a simple mechanical origin can be found, i.e. a mass
suspended between two identical Hooke springs [13]. If the springs are stretched by a distance
d when the mass is in its equilibrium position, both a quadratic and a quartic potential acts
on the mass; if the springs are unextended in the same position, only the quartic potential is
effective. The transition from a single particle to a chain is obtained by setting the extremities
of the springs, connected in couple, on two slides without friction.

2. Notations and models

Consider a chain of N particles of mass m with periodic boundary conditions interacting
through confining and translationally invariant potentials Un:

Un = λn Vn Vn = 1

n

N∑
i=1

(xi − xi+1)
n xN+1 = x1 (1)
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with n = 2, 4, 6, . . . ; in the following we shall useχ = λ2/2 and ε = λ4/4, both non-negative,
as in previous papers. Clearly, n = 2 gives the harmonic potential, and the usual change of
variables ∣∣∣∣ q

p

∣∣∣∣ = B

∣∣∣∣ x

ẋ

∣∣∣∣ (2)

diagonalizes the Hamiltonian:

H2 = K + χ V2 =
N∑
k=1

[
1

2m
p2
k +

1

2
ω2
kq

2
k

]
(3)

with

ω2
k = χ σ 2

k σk = 2 sin
(k − 1)π

N
V2 = 1

2

N∑
k=1

σ 2
k q

2
k . (4)

Since the matrix B does not depend on the coupling constant, the same transformation can be
performed also on systems with greater n. In particular, the Hamiltonian H4(q,p) reads

H4 = K + ε V4 = 1

2m

N∑
k=1

p2
k +

ε

4

N∑
i=1

[xi(q) − xi+1(q)]
4 (5)

and the FPU Hamiltonian HF, containing both V2 and V4, reads

HF = K + χ V2 + ε V4 = 1

2m

N∑
k=1

p2
k +

1

2

N∑
i=1

ω2
kq

2
k +

ε

4

N∑
i=1

[xi(q) − xi+1(q)]
4. (6)

The transformation (2) does not diagonalize the potential V4 and we leave it in implicit form.
For every observable f the time average is defined as usual:

〈f 〉 = lim
T→∞

1

T

∫ T

0
f (q(t),p(t)) dt. (7)

In the following, time averages will be labelled with an index indicating which Hamiltonian
provides the evolution: 〈f 〉4 and 〈f 〉F for H4 and HF. We refer to [12] for details of the
calculations presented below.

3. The FPU model

We recall some properties of FPU, relevant to our purposes. The strong stochasticity threshold
can be recognized, e.g., in the crossover of the largest Lyapunov exponent (LLE), described
for instance in [14]. This is shown in figure 1 (discussed below).

As for the pseudo-harmonic spectrum, we briefly summarize the procedure in [11].
Consider the formula

〈p2
k〉F = ω̃2

k 〈q2
k 〉F ω̃2

k = (1 + αF) ω
2
k = (1 + αF) χ σ 2

k k = 1, . . . , N. (8)

Without any further assumption, it represents the definition of αF, which, a priori, depends
on k. However, from numerical experiments, this quantity appears to be the same for all the
modes. This fact is not trivial at all and an analytical estimate of (8) was given, leading to αF

actually independent of k:

αF = 2
ε

χ
AF

〈
V2

N

〉
F

(9)



1226 C Alabiso and M Casartelli

10
2

10
 1

10
0

10
1

10
2

10
3

10
 6

10
 5

10
 4

10
 3

10
 2

10
 1

10
0

H

H
4

F

ENERGY

LY
A

P
U

N
O

V
 E

X
P

O
N

E
N

T

Figure 1. Maximal Lyapunov exponent for H4, above, and for HF, below, N = 64, as functions
of energy density u.

where AF is defined as the correlation among time averages of V2 and V4:〈
V4

N

〉
F

= AF

[〈
V2

N

〉
F

]2

. (10)

〈V2/N〉F can be obtained by substituting (8)–(10) in the time average of the energy (6), finally
leading to

αF = 2

3

[(
1 +

3 ε uAF

χ2

)1/2

− 1

]
. (11)

Correlation AF has to be determined experimentally, but a few observations are in order. It is
a dimensionless parameter, which can depend on N,m, ε, χ, u, and also on the phase point
for u below the stochasticity threshold. Above it, time averages in (10) do not depend on
initial conditions (apart from u), and AF does not either. Therefore, above the threshold, it can
depend only on N and on the other dimensionless parameter of the system:

a = ε u

χ2
	⇒ AF = AF(a,N). (12)

Numerical experiments reported in [11] and [12], have shown that:

• actually, the correlation AF does not depend on N , for N sufficiently large, in the whole
wide range of the experiments, even below threshold; furthermore, it has finite limits for
both a → 0 and ∞;

• frequencies ω̃k are real oscillations of the system as observed in time series of global
quantities, e.g. K , even above threshold;

• expression (11) is extremely accurate below and above threshold.
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Figure 2. Correlation parameters A4, below, and AF, above, N = 64, as functions of energy
density u.

Formula (8) represents a ‘generalized virial formula’, with the coordinates (q,p) playing the
role of ‘normal modes on average’.

Figures 1 and 2 show that LLE and AF undergo a transition at the same value of the order
parameter u. This suggests that AF is very sensitive to the stochastic transition. Furthermore,
its stabilization is much faster than for LLE, which requires extremely long averages and a
great accuracy in numerical integration. The stability when varying the sampling is very good.
Figure 2 is for N = 64 and the other cases have not been reported because they are practically
identical. The figures contain also the corresponding results for H4, treated in the following.

Finally, by summing up over k in (8) and taking (9) into account, it follows:

〈K〉F = χ (1 + αF) 〈V2〉F = χ 〈V2〉F + 2 ε〈V4〉 = 〈U2 + 2U4〉F (13)

which appears as a global virial estimate for the inhomogeneous potential of HF.

4. The H4 chain

The stochasticity of the H4 model can be tested through the LLE, as described before. The
results are given in figure 1, together with those on FPU. These experiments show that H4 does
not undergo any stochastic transition: not only is its exponent always positive, but it has no
crossover in the whole range of energy, and it has the same scaling law (u1/4) as FPU has when
u → ∞.

As for the pseudo-harmonicity of H4, i.e. the existence of ‘normal modes on average’, we
may proceed in three ways.

(I) All the previous procedure leading to (11) can be resumed just by adapting the proofs
in [11] to the purely quartic model H4. In fact, in formula (8), the addendum 1 trivially takes
into account the contribution of the harmonic potential, and this can be omitted from the proofs
from the beginning.
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(II) In order to avoid tedious comparisons and the heavy estimates of (I), a simpler
approach can be applied by exploiting the ordinary virial theorem, valid for H4 because of
its homogeneous potential. Consider the expression similar to (8):

〈p2
k〉4 = ω̂2

k 〈q2
k 〉4 ω̂2

k = α4σ
2
k . (14)

For α4, the independence of k is assumed here as an ansatz, disregarding the estimates made
in the appendix of [11]. By summing up over k, it follows:

〈K〉4 = α4 〈V2〉4. (15)

This expression reminds us of the virial theorem, which in the actual case reads

〈K〉4 = 2 〈U4〉4 = 2 ε〈V4〉4. (16)

The connection between these two formulae is achieved by the correlation A4 defined by〈
V4

N

〉
4

= A4

[〈
V2

N

〉
4

]2

. (17)

Substituting (17) into (16) and by comparison with (15), we obtain

α4 = 2 ε A4

〈
V2

N

〉
4

. (18)

Furthermore, formulae (16) and (17), substituted in the time average of (5), lead to

E = 〈H4〉4 = 〈K〉4 + ε 〈V4〉4 = 3 ε A4 N

〈
V2

N

〉2

4

. (19)

Formula (18), with 〈V2/N〉4 derived from (19), finally reads

α4 = 2

√
u ε A4

3
. (20)

The dimensionless correlation A4 must be determined experimentally, as much as AF but in
easier conditions: since H4 is stochastic for all u, A4 can depend only on m, ε, u and N (see
the discussion following (11)). However, since no dimensionless quantity can be formed from
m, ε and u, A4 actually can depend only on N . Figure 2 confirms the independence of u, and
experiments not reported here show independence also of N , at least for N � 64.

Note that (17) can be rewritten as

〈V4〉4 = A4

〈
V2

N

〉
4

1

2

∑
σ 2
k 〈q2

k 〉4 (21)

and, using for 〈V2/N〉4 the value obtained from (19), the total energy can now be expressed as

E =
N∑
k=1

[
1

2m
〈p2

k〉4 +
1

4
ω̂2
k 〈q2

k 〉4

]
. (22)

As (8) for FPU, (14) represents a ‘generalized virial formula’ and, together with formula (22), it
suggests that coordinates (q,p) play the role of ‘normal modes on average’ with frequencies ω̂k .

As said before, this proof is simpler than that outlined in (I), with the drawback that the
analytical estimate of (20) is missing. Finally, note that all this procedure could be extended
to Hamiltonians Hn as in (1), with n � 6.

(III) The quasi-harmonic spectrum for H4 can also be obtained directly, by considering
the limit χ → 0 in previous results for FPU. In this limit HF → H4 with the harmonic term
playing the role of perturbation of the potential V4: the potential shape is qualitatively stable
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Figure 3. Power spectra at u = 100 of kinetic energy K , for the H4 model, N = 64. The + signs
mark the frequencies ω̂k as given by formula (14) with (20).

and, on physical grounds, we can expect a regular dependence of the solutions at the limit.
Note that this is the opposite of the usual perturbative approach with ε → 0.

Through a direct inspection, formulae (8), (10) and (11) for FPU go to the
corresponding (14), (17) and (20) for H4. More explicitly, for χ → 0

AF → A4 χ αF → α4 ω̃2
k → ω̂2

k . (23)

Furthermore, from (13) the virial theorem (16) is obtained.

5. Asymptotic behaviour and conclusions

Generally speaking, the infinite limits cannot be checked experimentally but, in our case,
u → ∞ can be shown to be somehow equivalent to χ2 → 0. This leads to the possibility of
studying the asymptotic energy limit of FPU, through a rescaling of the H4 results at a finite
ū. Consider indeed formula (12): since AF, apart from N , depends only on a = ε u/χ2, the
limits χ2 → 0 and u → ∞ are equivalent to each other, and both to a → ∞. Therefore,
AF → A4 also for u → ∞. As a consequence, from (11), we obtain

χ αF ≈ 2

√
u ε A4

3
= α4 	⇒ ω̃k ≈ ω̂k (24)

for both χ � 1 and u � 1. The real content of (24) is that, since A4 does not depend on the
energy, the asymptotic terms depend on u only through the factor

√
u. Therefore, by rescaling

the H4 pseudo-harmonic spectrum at energy density ū with
√
u/ū, results at every high energy

u can be obtained for both FPU and H4.
In order to check the effective existence of frequencies ω̂k , we have considered a number

of observables (kinetic or potential energies, microcanonical density, and other quantities
already studied in [12]), and their instantaneous values along the trajectory. The time series,
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analysed by fast Fourier transform, give power spectra such as in figure 3. The peaks in the
figure correspond to the set of frequencies analytically given in (14) with (20), and this is
true in the whole range of energy where experiments have been carried out. For the tail of
frequencies above the maximal ω̂k , see discussions in [12] where analogous spectra for FPU
were studied. In conclusion, our claims are confirmed by numerical checks: there exists forH4

a frequency spectrum proportional to the harmonic one, even if there is no harmonic potential
in the Hamiltonian. Moreover, H4 describes accurately the asymptotic behaviour of FPU.
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